Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
The set Q consists of the following terms:
times2(x0, plus2(x1, 1))
times2(x0, 1)
plus2(x0, 0)
times2(x0, 0)
Q DP problem:
The TRS P consists of the following rules:
TIMES2(x, plus2(y, 1)) -> TIMES2(x, plus2(y, times2(1, 0)))
TIMES2(x, plus2(y, 1)) -> TIMES2(1, 0)
TIMES2(x, plus2(y, 1)) -> PLUS2(times2(x, plus2(y, times2(1, 0))), x)
TIMES2(x, plus2(y, 1)) -> PLUS2(y, times2(1, 0))
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
The set Q consists of the following terms:
times2(x0, plus2(x1, 1))
times2(x0, 1)
plus2(x0, 0)
times2(x0, 0)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TIMES2(x, plus2(y, 1)) -> TIMES2(x, plus2(y, times2(1, 0)))
TIMES2(x, plus2(y, 1)) -> TIMES2(1, 0)
TIMES2(x, plus2(y, 1)) -> PLUS2(times2(x, plus2(y, times2(1, 0))), x)
TIMES2(x, plus2(y, 1)) -> PLUS2(y, times2(1, 0))
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
The set Q consists of the following terms:
times2(x0, plus2(x1, 1))
times2(x0, 1)
plus2(x0, 0)
times2(x0, 0)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
TIMES2(x, plus2(y, 1)) -> TIMES2(x, plus2(y, times2(1, 0)))
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
The set Q consists of the following terms:
times2(x0, plus2(x1, 1))
times2(x0, 1)
plus2(x0, 0)
times2(x0, 0)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
TIMES2(x, plus2(y, 1)) -> TIMES2(x, plus2(y, times2(1, 0)))
Used argument filtering: TIMES2(x1, x2) = x2
plus2(x1, x2) = plus2(x1, x2)
1 = 1
times2(x1, x2) = times
0 = 0
Used ordering: Quasi Precedence:
1 > [times, 0]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
times2(x, plus2(y, 1)) -> plus2(times2(x, plus2(y, times2(1, 0))), x)
times2(x, 1) -> x
plus2(x, 0) -> x
times2(x, 0) -> 0
The set Q consists of the following terms:
times2(x0, plus2(x1, 1))
times2(x0, 1)
plus2(x0, 0)
times2(x0, 0)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.